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Inference on Predicted Data
(IPD)

@ Upstream, a black-box Al/ML algorithm is trained to predict Y, the outcome,
from collected features, X. The output is a prediction rule, f

Bayesian Sandwich
estimation

Finding a Bayesian analog of the
sandwich variance estimator is still an
open problem

The researcher conducts inference
@ on predicted data (here, prediction-

powered inference) by correcting
the estimate and standard error in
the unlabeled data using the
relationship between the true and
predicted outcomes and the
features in the labeled data.
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Downstream, a researcher
collects n labeled (Y,X) and N
unlabeled observations (X)

@ The researcher
predicts the labeled
and unlabeled
outcomes using the
given prediction_-~
rule, f.
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Inference on predicted data (IPD) is a problem
where one is interested in doing statistical
inference when part of the data is partially
black-box imputed

One practical approach developed [1] is
to use a model flexible model where the
mean and variance use B-splines

Computationally fast and surprisingly
accurate in real data problems

One procedure for IPD is Prediction-Powered
Inference which estimates g from:

_ | _ ; Dynamic Linear Model
BPP! = argming Ly(B) + (Ln(B) — LL(B))

We use a common approach to Dynamic Linear

[L,(B),L,(B), Lfl(ﬁ)] are the loss functions
using the black-box predicted values, the
experimentally observed values, and the black-
box predictions of the experimental data.

In the case of linear models, this simplifies to:
onaive — argminﬁ |YS_')/Tl _Xsyn 18”

Z = a?‘gminﬁll(f(Xregz) - Yreal) — Xreallg”
RPPI — 'Bnawe + A

This estimator has multiple useful properties:
« |Itisunbiased for the true g

A describes how biased your prediction
rule is from Y when it comes to
estimating g

pm*ve and A are estimated on separate
datasets so the width of the Cl of gn#¥¢ is
the sum of the CI of g€ and A

Both are parametric estimators

Estimation the standard errors under model
misspecification is done via sandwich
variance estimator

models and posit
Ve = X{ B + €

Where B; evolves according to the state
equation:

Bt = Bt-1 + 6
And 5t ~ N(O, Wt)'

This yields estimation equation:
Bea Y™t ~ N(B—1,Z¢-1)

And prediction equation:
Bel Y71 ~ N(Be-1, Re)

Where: R
Ry =Xi1/A¢

With 1; < 1 ensuring the model “forgets” past
observations

When using an IPD estimator, this yields:
BelVE7H YTt ~ N (B2, ¢4

Be VLYt ~ N(BYYYe + R, RYYYe + R )

And;
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Bayesian Optimal

Experimental Design

Let {; € (0,1) be the fraction of the budget spent
on real and synthetic data. One can optimize for
Expected Information Gain:

EIG(¢) = By, H@BIY (&) — H(p(BIY ()]
p(YtIﬁ)]
p(Y'?) ©

= Eyt(gt),g[log

Which [4] showed can be well approximated by the
nested-Monte-Carlo approach:

N
FIG(() ~ 2 Z 3 P(Y;|Bn.0)

B ~p(BIY ), Y, ~ p(Yy|Bno)
N i=1 M Zf\; p(Y;t|Bn,m)

Intuition: As we get further from the initial
model training, EIG is maximized by increasing
the ratio of real to synthetic data

Future Work

Trial Design for global mortality estimation

Globally, 1/3 of deaths are not given a reliable cause of
death, and autopsies are often unavailable due to a lack
of local resources. Alternative forms of data collection
such as verbal autopsies, phone surveys, or model-
based imputation exist but face a transportability bias
issue. This procedure can help design more effective
ways to combine on-site data collection with cheaper
forms of data collection.

Bayesian Model Averaging over Rashomon sets to
improve robustness

Here, we only consider the effectiveness of using one
black-box imputation model, but different models can
be good at different time periods (such as dynamic
switching model), by combining Rashomon sets with
Bayesian model averaging, we can do our inference over
the set of reasonably-accurate models and improve
the applicability
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