Some models are useful, but for how long?
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Economic Allocation Let’s Save some Money!

Optimal economic decision for utility functions with various levels of

Estimating MSE
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1. For each calibiration point ¢t € {7y, ..., 71}, perform PPI++ and compute Wi?m Fits ]f)@-,re Fits

and ¥; « Larger A makes one more averse to MSE volatility from Recalibration becomes preferable when:
Prediction-Powered Inference++ 2. Fit time series for W ye fit, Di refit, and 4;. A A the data generation process, while larger 6 makes one
Reca“bration 3. Using said time series, estimate the forcasted distribution for for W .. #it, A refit, and y; more averse to MSE VOlatlllty from calibration data 1. Cost of model ﬂtting increases
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4. For each sample size ratios ¢ € (0, ..., 1):
(a) Forb=1,...B:
i. Draw A?, Wi,re #it, and Di,,ﬂe it from their forecast distributions

Prediction-Powered Inference++ is a procedure 2. Cost of labeled data increases
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for performing valid statistical inference when
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R . _ f 5. MSEref = minn(MSEref(n))
0 = argming L,(0) + A(L,(0) — L;,(0)) Refit is Optimal If e > 0and Wyep > Wyeys
Decision Rule = ¢ Recalibrate is Optimal If Wy e > 0 and Wyef < Wree

Retain is Optimal If Wyee < 0and wyr <0

« Seeks to estimate the optimal PPI++ correction factor

Take Away: Determining how to
at the point of forecast.

maintain a model is complex, but it

[Ln(e),in(e),Lﬁ(e)] are the loss function using
the black-box predicted values, the
experimentally observed values, and the black-
box predictions of the experimental data.

« Requires learning the rate of decay/increase for point A= —1% (Ep(MSEres) — MSErer)

can be done using model
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« Estimates the optimal ratio of labeled to unlabeled
data at the point of forecast as well as the MSE using .

H = Aop(MSEef, MSEppr++)

financial asset allocation

Analytical solution to determine optimal allocation of

such data will achieve.

budget to refit, w,.¢, and recalibrate, Wy,
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